Knowledge Representation in Learning Classifier Systems: A Review
نویسندگان
چکیده
Knowledge representation is a key component to the success of all rule based systems including learning classifier systems (LCSs). This component brings insight into how to partition the problem space what in turn seeks prominent role in generalization capacity of the system as a whole. Recently, knowledge representation component has received great deal of attention within data mining communities due to its impacts on rule based systems in terms of efficiency and efficacy. The current work is an attempt to find a comprehensive and yet elaborate view into the existing knowledge representation techniques in LCS domain in general and XCS in specific. To achieve the objectives, knowledge representation techniques are grouped into different categories based on the classification approach in which they are incorporated. In each category, the underlying rule representation schema and the format of classifier condition to support the corresponding representation are presented. Furthermore, a precise explanation on the way that each technique partitions the problem space along with the extensive experimental results is provided. To have an elaborated view on the functionality of each technique, a comparative analysis of existing techniques on some conventional problems is provided. We expect F. Shoeleh Computer Science and Engineering Dept. Shiraz University, Shiraz, Iran. E-mail: [email protected] M. Majd E-mail: [email protected] A. Hamzeh E-mail: [email protected] S. Hashemi E-mail: s [email protected] this survey to be of interest to the LCS researchers and practitioners since it provides a guideline for choosing a proper knowledge representation technique for a given problem and also opens up new streams of research on this topic.
منابع مشابه
دستهبندی پرسشها با استفاده از ترکیب دستهبندها
Question answering systems are produced and developed to provide exact answers to the question posted in natural language. One of the most important parts of question answering systems is question classification. The purpose of question classification is predicting the kind of answer needed for the question in natural language. The literature works can be categorized as rule-based and learning...
متن کاملNEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS
Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative...
متن کاملADX Algorithm: a brief description of a rule based classifier
In this paper, a new rule based classifier is presented. ADX is an algorithm for inductive learning and for later classification of objects. As is typical for rule systems, an knowledge representation is easy to understand by a human. The power of ADX algorithm is that rules are not too complicated and learning time increases linearly with the size of dataset. The new elements in this work are ...
متن کاملبهبود کارایی طبقهبندیکننده مبتنی بر نمایش تنک برای طبقهبندی سیگنالهای مغزی
In this paper, the problem of classification of motor imagery EEG signals using a sparse representation-based classifier is considered. Designing a powerful dictionary matrix, i.e. extracting proper features, is an important issue in such a classifier. Due to its high performance, the Common Spatial Patterns (CSP) algorithm is widely used for this purpose in the BCI systems. The main disadvanta...
متن کاملA Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1506.04002 شماره
صفحات -
تاریخ انتشار 2015